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The multiscale finite-volume (MSFV) method was originally developed for the solution of
heterogeneous elliptic problems with reduced computational cost. Recently, some exten-
sions of this method for parabolic problems have been proposed. These extensions proved
effective for many cases, however, they are neither general nor completely satisfactory. For
instance, they are not suitable for correctly capturing the transient behavior described by
the parabolic pressure equation. In this paper, we present a general multiscale finite-
volume method for parabolic problems arising, for example, from compressible multiphase
flow in porous media. Opposed to previous methods, here, the basis and correction
functions are solutions of full parabolic governing equations in localized domains. At the
same time, to enhance the computational efficiency of the scheme, the basis functions
are kept pressure independent and do not have to be recalculated as pressure evolves. This
general approach requires no additional assumptions and its good efficiency and high
accuracy is demonstrated for various challenging test cases. Finally, to improve the quality
of the results and also to extend the scheme for highly anisotropic heterogeneous
problems, it is combined with the iterative MSFV (i-MSFV) method for parabolic problems.
As one iterates, the i-MSFV solutions of compressible multiphase problems (parabolic
problems) converge to the corresponding fine-scale reference solutions in the same way
as demonstrated recently for incompressible cases (elliptic problems). Therefore, the
proposed MSFV method can also be regarded as an efficient linear solver for parabolic
problems and studies of its efficiency are presented for many test cases.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Current advances in characterization and data integration for natural porous media provide increasingly detailed descrip-
tions of the formations, which are essential for accurate reservoir simulations. Unfortunately, classical simulation techniques
are too expensive at this level of resolution. Therefore, various multiscale methods have been developed during the past
decade [1–12] based on the fact that solving many local problems is more efficient than solving one global system. Hence,
localized problems are considered and sets of numerically computed basis functions (honoring the provided permeability
field) are employed to solve the problem on a coarse grid. The approximate fine-scale solution is reconstructed based on
the coarse-scale solution. It has been demonstrated for a wide range of test cases that this solution field is in good agreement
with the results obtained by solving the global fine-scale system. Among the proposed multiscale methods, Mixed Multiscale
Finite Element (MMSFE) methods [6,9,11,13] and the multiscale finite-volume (MSFV) method [7,14–16] provide locally
conservative velocity fields, which is crucial for accurately solving the saturation transport equations.
. All rights reserved.
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The MSFV method was proposed by Jenny et al. [7,14–16] for heterogeneous elliptic problems arising from incompress-
ible multiphase flow in porous media. Later, to capture the fine-scale source terms and also capillary and gravitational effects
accurately, another set of functions with local support (correction functions) were introduced by Lunati and Jenny [17,18].
Correction functions are particular (non-scalable) numerical solutions of the problem in the localized small domains. The
MSFV method has also been extended to incorporate complex wells [19–21]. Recently, to improve the quality and the appli-
cation of the MSFV method for extremely heterogeneous anisotropic problems, the iterative MSFV (i-MSFV) method to con-
verge multiscale solutions to the corresponding fine-scale reference solutions was developed by Hajibeygi et al. [22]. The
idea of the i-MSFV method is based on improving the localization condition iteratively using the smoothed approximate
MSFV solution. It is also important that the conservative solution field can be reconstructed after any iteration step. There-
fore, the i-MSFV method can be used anywhere between a pure multiscale and an efficient linear solver. More recently, Bon-
figli and Jenny used the i-MSFV method as an efficient Poisson solver for the incompressible Navier–Stokes equations with
immersed boundaries [23].

The MSFV method was also extended for the solution of parabolic problems arising from compressible multiphase flow in
porous media through three major works [24–26]. The proposed approaches proved to be effective for many cases, however,
there still exists potential for significant improvement.

Lunati and Jenny [24] neglected compressibility effects inside the localized domains in order to avoid a frequent update of
the basis functions. In their approach, only the coarse-scale system accounts for the compressibility effects. This scheme is
computationally efficient, but requires additional assumptions. Later, Zhou and Tchelepi [25] relaxed this assumption only in
the elliptic part of the localized problems. In their Operator Based Multiscale Method (OBMM), accumulation terms only ap-
pear in the coarse-scale system. In some of the difficult cases, the results of this approach are in better agreement with the
corresponding fine-scale solutions. However, also the OBMM cannot properly capture the transient fine-scale behavior. None
of the above-mentioned approaches involves correction functions. Recently, Lee et al. [26] employed correction functions to
account for the accumulation terms in the localized domains. In their work, similar to [25], basis functions are still numerical
solutions of the elliptic part of the full parabolic problem and must be recomputed in each iteration step. Despite updating
the basis functions adaptively helps to improve the computational efficiency of the scheme, it is favorable to keep the basis
functions pressure level independent.

In this paper, first a general MSFV framework for parabolic problems is presented. In the new method, the basis functions
are kept independent of the pressure field. Such an approach is not only more general and accurate than previous methods;
at the same time it is also efficient. Moreover, to construct the coarse system, exactly the same procedure applies as for the
incompressible (elliptic) MSFV method.

In a second part, the i-MSFV method for compressible multiphase flow in porous media (parabolic problems) is presented.
Similar to the i-MSFV method for elliptic problems [22], the solution field is smoothed in each iteration step and used to
improve the localization condition for the next iteration step. So far, only a limited set of smoothers has been explored.
For highly anisotropic heterogeneous problems (or for simulations with a stretched grid), however, line-relaxation proved
to be very effective [22] and hence was used as a smoother for this work.

The paper is organized as follows. In Section 2, the governing equations and the fine-scale discretization are presented.
The standard MSFV method for elliptic problems is explained in Section 3. Based on that, in Section 4 the new MSFV method
for parabolic problems arising from compressible multiphase flow in porous media is introduced. Numerical test cases are
presented in Section 5 and in Section 6, the i-MSFV method for compressible multiphase flow is introduced. In Section 7, its
numerical convergence is studied for different test cases and finally the paper is concluded.
2. Governing equations and fine-scale discretization

For simplicity, but without loss of generality, no dissolution and no capillary effects are considered here. In this case,
Darcy’s formulation of multiphase flow in porous media leads to the mass conservation law
@

@t
ð/qaSaÞ � r � qaka � ðrp� qagrzÞð Þ ¼ qaqa 8a 2 f1; . . . ; cg ð1Þ
of phase a, where / denotes the porosity, qa the density, Sa the saturation, g the gravitational acceleration, and qa source
terms. Moreover, ka = Kkra/la is the phase mobility with the positive definite permeability tensor K, the relative permeability
kra, and the phase viscosity la. Porosity, density and viscosity are given as algebraic functions of the pressure p and kra is a
function of the saturations. Phase saturations are subject to the constraint
Xc

a¼1

Sa ¼ 1: ð2Þ
Note that Eqs. (1) and (2) form a system for c + 1 unknowns (S1, . . . ,Sa,p) [27].
Implicit Euler time integration leads to
/nþ1qnþ1
a Snþ1

a � /nqn
aSn

a

Dt
�r � qnþ1

a ka � rpnþ1 � qnþ1
a grz

� �� �
¼ qnþ1

a qa; ð3Þ
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which is now divided by the density qnþ1
a in order to obtain a decoupled pressure equation. This is achieved by then taking

the sum over all phases a resulting in
/nþ1

Dt
� /n

Dt

Xc

a¼1

Bnþ1
a qn

aSn
a �

Xc

a¼1

Bnþ1
a r � qnþ1

a ka � rpnþ1 � qnþ1
a grz

� �� �
¼ q; ð4Þ
where q ¼
Pc

a¼1qa denotes the total volumetric source term and Ba = 1/qa is the volume formation factor. Linearization of
this equation results in the iterative linear pressure equation
C
Dt
ðpmþ1 � pmÞ �

Xc

a¼1

Bm
ar � ðqm

aka � rpmþ1Þ ¼ �/m

Dt
þ /n

Dt

Xc

a¼1

Bm
aq

n
aSn

a þ q�
Xc

a¼1

Bm
ar � ðqm

a
2kag � rzÞ; ð5Þ
which converges to Eq. (4) as m ?1. The superscripts m and m + 1 denote quantities at the old and new iteration levels,
respectively, and
C ¼ @/
@p

����
m

� /n
Xc

a¼1

@Ba

@p

����
m

qn
aSn

a ð6Þ
is the compressibility coefficient. Note that the coefficients Ba and qa in the convective and gravitational terms lag one iter-
ation behind. This discretized formulation was already used in previous studies to solve the fine-scale problem [25,26].

Here, however, for the sake of a more efficient MSFV formulation, which will be explained later, the convective term is
consistently modified as
Xc

a¼1

Bm
ar � ðqm

aka � rpmþ1Þ � r � ðkt � rpmþ1Þ � r � ðkt � rpmÞ þ
Xc

a¼1

Bm
ar � ðqm

aka � rpmÞ; ð7Þ
where kt ¼
Pc

a¼1ka is the total mobility. Note that m = m + 1 = n + 1, if converged. It is worth mentioning that for black-oil
models, which are more realistic to describe multiphase flow in oil reservoirs [27], one can still use this expression. Addi-
tional effects are, e.g. capillary pressure differences and mass exchange between phases, which are treated on the right-hand
side, i.e. the implicit convection operator has the same structure as in Eq. (7) [26]. Finally, our convergent iterative scheme
for the fine-scale pressure equation reads
C
Dt
ðpmþ1 � pmÞ � r � ðkt � rpmþ1Þ ¼ RHSm; ð8Þ
where
RHSm ¼ �/m

Dt
þ /n

Dt

X
a

Bm
aq

n
aSn

a �
Xc

a¼1

Bm
ar � ðqm

a
2kag � rzÞ þ q�r � ðkt � rpmÞ þ

Xc

a
Bm

ar � qm
aka � rpm� �

: ð9Þ
Here, ka is calculated based on Sn
a leading to an IMPES (Implicit in Pressure, Explicit in Saturation) scheme. In other words, Eq.

(8) is solved until convergence occurs, then the new pressure field is used to solve the saturation Eq. (3) explicitly using a
second order upwind scheme. Note that alternatively, Eq. (3) can be solved implicitly, thus leading to a sequentially implicit
scheme [24–26]. It is an important property for relation (8) that except of the accumulation term its structure is the same as
for elliptic problems. Next, we will explain how one can solve an elliptic (incompressible) or parabolic (compressible) pres-
sure equation using the MSFV method.
3. MSFV method for incompressible multiphase flow (elliptic)

First, before the new MSFV method for compressible problems will be explained, the previously developed MSFV method
is described here. Therefore, we consider the elliptic problem
�r � kt � rpð Þ ¼ q ð10Þ
on the domain X with the boundary conditions rp � n = f and p = n at oX1 and oX2, respectively. Note that oX = oX1 [ oX2

with oX1 \ oX2 = ; is the whole boundary of the domain X and n is the unit normal vector pointing outwards. The mobility
tensor kt is positive definite and the right-hand sides q, f, and n are specified fields.

The MSFV method relies on an imposed coarse grid (solid lines in Fig. 1) and on a dual coarse grid (dashed lines in Fig. 1).
The former is composed of M control volumes �Xk (k 2 [1,M]) and the latter of N cells ~Xh (h 2 [1,N]). As illustrated in Fig. 1,
each control volume �Xk contains exactly one node xk of the dual coarse grid in its interior. These two grids can be much coar-
ser than the underlying fine grid, on which the mobility field is represented. The reduction of degrees of freedom to describe
the fine pressure pf is achieved through the approximation
pf ðxÞ � p0ðxÞ ¼
XN

h¼1

XM

k¼1

Uh
kðxÞ�pk þUhðxÞ

" #
; ð11Þ



Fig. 1. The computational domain X with the coarse grid (solid lines) and the dual coarse grid (dashed lines); bold solid and bold dashed lines indicate a
selected coarse cell �Xk and a selected dual coarse cell ~Xh , respectively. Shown on the right side is an enlarged coarse cell, which contains 11 � 11 fine cells.
The fine-scale boundary volumes of the adjacent dual coarse cells are depicted in grey.
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where �pk are the pressure values at the nodes xk. Opposed to the classical finite-element methods, basis functions Uh
k and

correction functions Uh are not analytical functions, but local numerical solutions of problem (10) on ~Xh without and with
right-hand side, respectively; subject to the reduced problem boundary conditions
Fig. 2.
localize
ð~nh � rÞ ðkt � rUh
kÞ � ~nh

� �
¼ 0 ð12Þ
and
ð~nh � rÞ ðkt � rUhÞ � ~nh
� �

¼ rh ð13Þ
at @ ~Xh with ~nh being the unit normal vector pointing out of ~Xh. At the dual-grid nodes xl;U
h
kðxlÞ ¼ dkl and Uh(xl) = 0. By con-

struction, Uh
k and Uh are set to zero outside of ~Xh. An illustration of 2D basis and correction functions is shown in Fig. 2.

To derive a linear system for the coarse pressure values �pk, we substitute p in Eq. (10) with the approximate expression
(11) and integrate over �Xl, which leads to
�
Z

�Xl

r � ðkt � rp0ÞdX ¼ �
Z

�Xl

r � kt � r
XN

h¼1

XM

k¼1

Uh
k �pk þUh

 ! ! !
dX ¼

Z
�Xl

qdX ð14Þ
for all l 2 [1,M]. With the Gauss theorem one obtains
�
Z
@ �Xl

kt �
XN

h¼1

XM

k¼1

�pkrUh
k þrUh

 ! !
� �nl dC ¼

XM

k¼1

�pk

XN

h¼1

Z
@ �Xl

ð�kt � rUh
kÞ � �nl dCþ

XN

h¼1

Z
@ �Xl

ð�kt � rUhÞ � �nl dC ¼
Z

�Xl

qdX;

ð15Þ
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Illustration of the basis function Uh
1 (left) and the correction function Uh (right) for elliptic problems. The permeability map for the corresponding

d domain ~Xh is partly shown on the base surfaces.
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which results in the linear system
Alk�pk ¼ bl ð16Þ
for �pk with
Alk ¼
XN

h¼1

Z
@ �Xl

ð�kt � rUh
kÞ � �nl dC ð17Þ
and
bl ¼
Z

�Xl

qdX�
XN

h¼1

Z
@ �Xl

ð�kt � rUhÞ � �nl dC: ð18Þ
The unit normal vector �nl points out of �Xl. Note that the right-hand side bl also contains the effects of the fine-scale fluxes
across @ �Xl induced by the correction functions Uh.

With �pk and the superposition (11) one obtains the fine-scale pressure p0, which is an approximation of the fine-scale ref-
erence solution pf. An interesting property of this MSFV method is that the difference between p0 and pf is solely due to the
localization assumption (13), i.e. with
rh ¼ ð~nh � rÞ ðkt � rpf Þ � ~nh
� �

at @ ~Xh 8h 2 ½1;N� ð19Þ
the two fine-scale pressure fields become identical.
It has been shown for a wide range of challenging test cases that the MSFV method with reduced problem boundary con-

ditions (rh = 0) leads to very accurate results.
For multiphase problems, a conservative fine-scale velocity field is required to honor mass balance of the transported

phase saturations. While the velocity
u0 ¼ �kt � rp0 ð20Þ
fulfills this requirement in a weak sense, i.e. for each coarse volume �Xk, the fine-scale velocity field u0 is non-conservative at
the dual-cell boundaries. Therefore, if one is interested in solving saturation transport on the fine grid, a further step is re-
quired. To reconstruct a conservative fine-scale velocity field u00, which is consistent with u0, the additional local problems
�r � ðkt � rp00kÞ ¼ q on �Xk ð21Þ
with
ðkt � rp00kÞ � �nk ¼ ðkt � rp0Þ � �nk at @ �Xk ð22Þ
are solved. Note that the velocity field
u00 ¼ �kt � rp00k on �Xk;

�kt � rp0 at @ �Xk

(
ð23Þ
for all k 2 [1,M] is conservative (provided p00 is obtained with a conservative scheme) and can be employed to solve transport
equations on the fine grid [7].

An important property of the MSFV method is its adaptivity. For example, the conservative velocity reconstruction de-
scribed above is only required in those coarse cells �Xk, where fine-scale transport is of interest. Moreover, it is very important
that the basis and correction functions can be stored and reused for subsequent time steps. They have to be recomputed only
in those dual cells ~Xh, where changes of the coefficient kt or (for the correction functions) the right-hand side q exceed a
specified limit [14,16,15]. Next, we explain our new MSFV method for compressible multiphase flow, i.e. for parabolic
problems.
4. MSFV method for compressible multiphase flow (parabolic)

For incompressible flow, as explained in the previous section, basis and correction functions are local numerical solutions
of an elliptic problem with and without right-hand side, respectively. Here, this idea is consistently generalized for com-
pressible multiphase flow. Therefore, the basis and correction functions are computed by solving the localized problems
C
Dt

Uh
k �r � ðkt � rUh

kÞ ¼ 0 ð24Þ
and
C
Dt

Uhm
�r � ðkt � rUhm

Þ ¼ RHSm þ C
Dt

p0m ð25Þ
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on the dual coarse cells ~Xh; again subject to the reduced problem boundary condition as in the previously explained elliptic
case (Eqs. (12) and (13)). In contrary to the previous works [25,26], there is no iteration superscript for the basis function
calculations, i.e. they have to be computed only once while the correction functions are computed iteratively and take care
of all pressure dependencies. Note that in 3D there exist 8 times more basis than correction functions. When convergence
occurs, the first term on the left-hand side of Eq. (8) cancels out. Hence, the specific value of C does not affect the numerical
value of the converged solution, but affects the convergence rate. As C is a monotone function of the pressure, it can be com-
puted based on either p0m or p0n (or some reference pressure). In this work, to keep the basis functions totally out of the iter-
ation loop, C is computed based on p0n. An illustration of the basis and correction functions for parabolic problems (Eqs. (24)
and (25)) is given in Fig. 3. Moreover, Fig. 3(left) emphasizes the difference between a basis function, which is calculated
based on the full parabolic equation, i.e. Eq. (8), and the elliptic part of it, i.e. without the C

Dt U
h
k term (wireframe). Finally,

the time size for calculation of basis and correction functions are the same as that of the global parabolic problem.
To derive a linear system for the coarse pressure values �pk, we follow exactly the described procedure for incompressible

flow. Since the basis and correction functions are solutions of the full parabolic problem in the localized domains, no further
consideration in the coarse scale system, such as averaging the accumulation term, is necessary (opposed to [26]). Substitut-
ing expression (11) into Eq. (8) and integrating over �Xl leads to
Fig. 3.
localize
withou
Z
�Xl

C
Dt

XN

h¼1

XM

k¼1

�pmþ1
k Uh

k þUhm
 !

� p0m
 !

dX�
Z
@ �Xl

kt �
XN

h¼1

XM

k¼1

�pmþ1
k rUh

k þrUhm
 ! !

� �nl dC

¼
Z

�Xl

RHSm dXþ
Z

�Xl

qdX; ð26Þ
which results in an iterative linear system
Alk�pmþ1
k ¼ bm

l ð27Þ
for �pnþ1
k with
Alk ¼
XN

h¼1

Z
�Xl

C
Dt

Uh
k dX�

Z
@ �Xl

ðkt � rUh
kÞ � �nl dC

 !
ð28Þ
and
bm
l ¼

Z
�Xl

RHSm þ C
Dt

p0m
� �

dX�
XN

h¼1

Z
�Xl

C
Dt

Uhm
dX�

Z
@ �Xl

ðkt � rUhmÞ � �nl dC

 !
: ð29Þ
Using �pmþ1 for �p in expression (11) gives the new fine-scale pressure field p0m+1. The iterative procedure is repeated until p0

converges, i.e. until kp0mþ1 � p0mk1 < �, where � is a specified convergence parameter. As already mentioned, a conservative
velocity field must be reconstructed in order to solve the saturation transport equations on the fine grid. We reconstruct
it by solving Eq. (8) locally subject to the Neumann boundary conditions based on p0n+1; similar as in the incompressible case.
The resulting pressure field p00n+1 is considered as the final solution at the time step n + 1. Finally, this conservative total
velocity field is employed to explicitly solve the saturation Eq. (3) using a second order upwind scheme.

From the parabolic basis function calculation (Eq. (24)) and the coarse-scale matrix A (Eq. (28)) it is clear that the
accumulation term (compressibility coefficient) appears as a stencil in the coarse-scale system, and not only as a diagonal
contribution. This is an important factor for the high accuracy of the method, which will be illustrated for several test cases
0
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Illustration of the basis function Uh
1 (left) and correction function Uh (right) for parabolic problems. The permeability map for the corresponding

d domain ~Xh is partly shown on the base surfaces. Also shown (left) is the wire-frame of the basis function for the corresponding elliptic problem, i.e.
t first term on the left-hand side of Eq. (24).



Table 1
Algorithmic outline of one time step with the MSFV method for compressible multiphase flow.

initialize p0(t=n)

"h: "k: compute basis functions Uh
k ; Eq. (24)

from m = 1 to convergence {
"h: compute correction functions Uhm

; Eq. (25)
solve coarse system A � �pmþ1 ¼ bm; Eq. (27)
reconstruct p0m+1; Eq. (11)
update properties
m m + 1

}
reconstruct p00n+1 and calculate conservative velocity field; Eq. (8)
solve saturation transport equations; Eq. (3)
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in the next section. An algorithmic overview of the proposed MSFV method for compressible multiphase flow problems is
presented in Table 1.
5. Numerical results

5.1. Single-phase flow

To analyze the performance of the new scheme compared to the previous studies, first a one-dimensional (1D) homoge-
neous single-phase flow problem is studied. No gravity effects are considered and the domain is initially filled with ideal gas
at atmospheric pressure (14.7 psi). The right boundary is kept at a constant pressure of 14.7 psi and at time t = 0, the pressure
at the left boundary is increased to 10 atm (147.0 psi). We recall the state equation of ideal gas under isothermal conditions,
i.e.
Fig. 4.
fine and
was de
qg

qg0
¼ p

p0
; ð30Þ
where qg0 is the density at atmospheric pressure p0. The computational domain contains 105 fine cells and 5 coarse cells.
Fig. 4 shows results at different non-dimensional times t* = t/s, where
s ¼ l/L2

�kðpl � prÞ
: ð31Þ
In Eq. (31), �k is the average permeability in the domain, L is the length of the domain, and (pl � pr) is the pressure difference
between the left and right boundaries. It can be observed that the new MSFV method (Fig. 4(left)) leads to results, which are
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1D single-phase gas injection test case: pressure at three different times. Shown are the new MSFV and fine-scale reference solutions (left) using 105
5 coarse cells together with previous multiscale solutions presented in [25] (right) using 100 fine and 5 coarse cells. FSA based multiscale method

veloped by Lunati and Jenny [24] and OBMM method was developed by Zhou and Tchelepi [25].
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virtually identical to the fine-scale reference solutions. It is remarkable that unlike in previous works [24,25] (Fig. 4(right))
no peculiarities in the results were observed for the early transient phase.

Since no localization assumption is required for 1D problems, the MSFV and fine-scale solutions are identical up to ma-
chine accuracy. Note that in 2D or 3D, convergence of the MSFV solution can be achieved (even for highly anisotropic het-
erogeneous problems) by iteratively improving the localization assumption, i.e. by improving the boundary condition of the
local problems [22].

5.2. Depletion in 1D and 2D

As a second test case, depletion of a liquid–gas reservoir is studied. No gravity effects are considered and the reservoir
pressure is initially at 10 atmosphere (147.0 psi). At t = 0 the pressure at the right boundary is decreased to one atmosphere
(14.7 psi), while it is kept constant at the left boundary. At top and bottom, no-flow boundary conditions are applied. The
domain is initially filled with 50% ideal gas and 50% water. Porosity of the medium and viscosity ratio lg/lw are set to
0.1 and 1.8 � 10�2 everywhere, and the water compressibility is neglected. Water saturation Sw at the left boundary is kept
constant at 0.5. For all test cases presented in this paper, relative permeability is modeled as a quadratic function of the cor-
responding phase saturation.

First, a homogeneous 1D domain containing 105 fine and 5 coarse cells is considered. Fig. 5 shows the MSFV results (pres-
sure and saturation) at different times and it can be observed that they are in perfect agreement with the fine-scale reference
solutions. Another study was considered with a 2D permeability field, which was extracted from the top layer of the SPE
comparative test case 10 [28] (Fig. 6). The grid consists of 220 � 55 fine and 20 � 5 coarse cells. MSFV pressure and satura-
tion maps at t* = 10�4, t* = 10�3, and t* = 10�2 are depicted on the right of Figs. 7 and 8, respectively, and the corresponding
fine-scale reference solutions are shown on the left. For better comparison, the saturation maps are only shown for x P 160.
In addition, Figs. 9 and 10 show results at t* = 10�1 and t* = 1, respectively. Again, the MSFV and fine-scale solutions are in
excellent agreement.

5.3. Five-spot problem: ideal gas injection

As another test case, the injection of an ideal gas into a 2D heterogeneous domain with the same permeability as shown in
Fig. 6 is studied. No-flow boundary conditions are applied everywhere. The domain is initially filled with oil at atmospheric
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Fig. 5. Depletion of a homogeneous 1D domain: fine-scale solutions (using 105 cells) compared with the MSFV results (using 5 coarse cells); pressure (left)
and water saturation (right) at different non-dimensional times.

Fig. 6. Natural logarithm of the permeability extracted from the top layer of the three-dimensional SPE10 test case [28]; for a 220 � 55 fine grid.



Fig. 7. Heterogeneous 2D depletion test case: pressure filed obtained from the fine-scale simulation using 220 � 55 fine cells (left) and from the MSFV
simulation using 20 � 5 coarse cells (right) at t* = 10�4 (top), t* = 10�3 (middle), and t* = 10�2 (bottom).
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Fig. 8. Heterogeneous 2D depletion test case: water saturation maps obtained from the fine-scale simulation using 220 � 55 fine cells (left) and for the
MSFV simulation using 20 � 5 coarse cells (right) at t* = 10�4 (top), t* = 10�3 (middle), and t* = 10�2 (bottom). The results are only depicted for x P 160.
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pressure (14.7 psi) and no gravity effects are taken into account. At t P 0, an ideal gas is injected at a constant volumetric
rate from the left-bottom corner (fine cell (1,1)) and production occurs at the upper-right corner (fine cell (220,55)) at a con-
stant pressure of 14.7 psi. The viscosity ratio is 10 and it is assumed that the oil density obeys the isothermal linear equation
of state, i.e. that
qo

qo0
¼ 1þ 10�3ðp� p0Þ; ð32Þ
where qo0 is the density at the reference pressure p0 = 14.7 psi. Results are shown in Fig. 11 after 0.132 PVI (Pore Volume
Injected). For better comparison, Fig. 12 shows the absolute pressure and saturation differences between the fine-scale
and MSFV solutions. Again, a very good agreement can be observed.



Fig. 10. Heterogeneous 2D depletion test case: water saturation maps obtained from the fine-scale simulation using 220 � 55 fine cells (left) and from the
MSFV simulation using 20 � 5 coarse cells (right) at t* = 1.

Fig. 11. Heterogeneous 2D gas injection test case: pressure field (left) and gas saturation maps (right) obtained for the fine-scale simulation using 220 � 55
fine cells (top) and from the MSFV simulation using 20 � 5 coarse cells (bottom) at 0.132 PVI. The permeability field of Fig. 6 was employed.

Fig. 9. Heterogeneous 2D depletion test case: water saturation maps obtained from the fine-scale simulation using 220 � 55 fine cells (left) and from the
MSFV simulation using 20 � 5 coarse cells (right) at t* = 10�1.
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As another test case, the SPE10 bottom layer [28] (Fig. 13) with the same grid, phase properties and initial conditions as
for the top layer test case is considered. Again, no-flow boundary conditions are applied everywhere. Gas is injected from the
upper left corner (fine cell (1,55)) at a constant pressure of 147.0 psi and oil is produced at the bottom-right corner (fine cell
(220,1)) at a constant pressure of 14.7 psi. Fine and MSFV results are presented in Fig. 14 after t = 0.189s (based on oil vis-
cosity lo ¼ 1; Lx ¼ 220; �k ¼ 580:438, and Dp = (147.0 psi � 14.7 psi)). As for the previous test cases, a very good agreement
can be observed. For better comparison, absolute differences between the fine-scale and MSFV pressure and saturation solu-
tions are shown in Fig. 15.

5.4. Gas injection with gravity effects

As a final test case, the injection of an ideal gas into a vertical homogeneous 2D domain with strong gravity effects is con-
sidered. Initially, the domain is filled with oil (Eq. (32)) at a pressure of 147.0 psi. The problem is initialized by setting at the
upper boundary a constant pressure of 147.0 psi (Fig. 16).